Ms PacMan Controller
CoboPac01

Martin V. Butz & Christoph Häberlein

Department of Psychology III
University of Würzburg
Röntgenring 11, 97070 Würzburg, Germany

butz@psychologie.uni-wuerzburg.de
christoph.haeberlein@stud-mail.uni-wuerzburg.de

http://www.coboslab.psychologie.uni-wuerzburg.de
Knowledge Representations

• Represent **maze as graph**
 – Nodes: Crossings or corners
 – Edges: Pathways between crossings & corners

• **Propagate pill activities** through graph
 – Model-based Reinforcement Learning approach

• **Project ghost presences** ahead with
 – estimated times of arrival and
 – probability of presence.
Knowledge Representation Example
Decision Making

- Generate local planning tree of particular depth
 - Propagate ghost interference probabilities, pill activities, and power pill options up and down the tree.
 - Derive ghost interferences respective estimated own arrival time.
 - Choose best path according to current strategy
 - Eating pills
 - Running away from ghosts
 - Hunting ghosts
Troubles and Challenges

- Technical challenges:
 - Parse maze effectively and accurately
 - Even when ghosts and Ms.PacMan are overlapping
 - Extra challenge: Derive ghost and Ms.PacMan velocities
 - Press keys in time – not too early and not too late...
 - Best approach seems to hold next direction key down and release only when next other direction key needs to be pressed.
 - Synchronize planning updates and state changes

- Strategy obstacles:
 - Not much time for strategy optimization so far.
 - Multi-objective problem with different situations.
 - We believe, there is lots of potential – maybe for next year 😊
Thank you for the attention!

Martin V. Butz
COBOSLAB, Department of Psychology, University of Würzburg
http://www.coboslab.psychologie.uni-wuerzburg.de